Regenradar Schweiz

Datenquellen: MeteoSchweiz © meteoradar 2008

Niederschlagsradar

Ein Niederschlagsradar (auch Regenradar genannt) ist die am häufigsten verwendete Form eines Wetterradars. Mithilfe des Niederschlagsradars kann in einem begrenzten Umkreis der Wassergehalt einer Wolke gemessen werden, welcher wiederum Rückschlüsse auf eventuellen Niederschlag (Regen, Hagel oder Schnee) zulässt. Durch Auswertung von Dopplerfrequenzen können zugleich Windgeschwindigkeiten ermittelt werden. In der Meteorologie werden Niederschlagsradare genutzt, um aktuelle Daten für eine Wetterwarnung oder eine Wettervorhersage zu sammeln. In der Luftfahrt wird das Niederschlagsradar hauptsächlich genutzt, um Flüge durch Gewittergebiete zu vermeiden und die zu erwartenden Turbulenzen einschätzen zu können.

Funktionsweise

Ein Niederschlagsradar basiert auf dem Primärradarprinzip. Das Niederschlagsradar sendet Mikrowellen aus und empfängt den Teil dieser Wellen, der auf seinem Weg durch die Atmosphäre reflektiert wird. Operative, bodengebundene Niederschlagsradare in Europa arbeiten meistens im C-Band, d.h. mit Frequenzen um die 5,6 GHz (ca. 5,4 cm Wellenlänge).

Je mehr Wassertropfen, Schneekristalle oder Eiskörner die Atmosphäre pro Volumen enthält, desto mehr Mikrowellenstrahlung wirft sie zurück. Aus dem Zeitunterschied zwischen Senden der Strahlung und dem Empfang der reflektierten Strahlung kann auf den Abstand der Niederschlagspartikel von der Radaranlage geschlossen werden. Aus der Intensität der empfangenen Echosignale können beschränkt Rückschlüsse auf Größe und Aggregatzustand getroffen werden. Damit erhält man ein Bild über Abstand und Niederschlagsgehalt der Wolke.

Bei dem Messvorgang selbst kommt es zu einigen physikalisch bedingten Problemen:

Abnahme der Energiedichte über die Distanz: Die Radarstrahlen breiten sich divergent aus, sie verlieren dadurch gemäß dem Abstandsgesetz bei zunehmender Distanz an Energiedichte und das rückgestreute Signal wird schwächer. Diese Abschwächung wird Freiraumdämpfung genannt. Beim Niederschlagsradar ist diese Abnahme nach der Radargleichung für Volumenziele proportional dem Quadrat der Entfernung. Abhilfe ist die Nachsteuerung der Empfangsempfindlichkeit abhängig von der Entfernung, d.h. nach Abschicken des Sendeimpulses wählt man die Empfangsempfindlichkeit zunächst niedrig und steigert sie mit zunehmender Zeit nach dem Impuls. Diese zeitabhängige Verstärkungsregelung wird sensitivity time control genannt.

Die Stärke des Echosignals hängt sowohl von Größe und Anzahl reflektierender Objekte als auch von deren Aggregatzustand ab (feuchter Schnee reflektiert besser als Regentropfen oder gar Hagel und Graupel). Welche dieser Einflüsse überwiegt und die Stärke des Echosignals bestimmt, kann nicht so einfach durch das Radar ermittelt werden.

Radarschatten: Durch eine große Ansammlung an Wasser in Wolken wird so viel Radarstrahlung reflektiert, dass die restliche noch durch die Wolke dringende Radarstrahlung nun nicht mehr ausreicht, um ein Echo auf dem Radarschirm zu erzeugen – ein sogenannter Radarschatten entsteht. Abhilfe: Betrieb mehrerer im Land verteilter Niederschlagsradare, deren Erfassungsbereiche sich überlappen.

englisch Ground Clutter oder Bodenclutter sind Reflexionen an Bodenerhebungen und hauptsächlich in Luftraumaufklärungsradar ein Problem. An festen Bodenstationen können Ground Clutter durch gezielte Manipulation der Empfindlichkeit ausgelöscht werden. Die Größe dieser Störungen werden statistisch in einer elektronischen Clutter-Map registriert und Störungen durch 5 GHz WLAN im Regenradarvon den Niederschlagsechos subtrahiert. In der Luftfahrt wird versucht, durch ein Doppler-Verfahren (Moving Target Indication) die Anzeige von Bodenerhebungen auszublenden.

Interpretationsproblem beim Einsatz in der Luftfahrt: Die gemessene Rückstreuung der Wolken lässt nicht unbedingt Rückschlüsse auf die Stärke der damit verbundenen Turbulenzen oder die Art des Niederschlages zu. Abhilfe können auch hier Doppler-Verfahren und das Verwenden verschiedener Sendefrequenzen sein. Im gleichen Frequenzband wie das Niederschlagsradar arbeiten auch die 5 GHz WLAN-Stationen als Sekundärnutzer. Um Störungen zu vermeiden, müssen diese eine automatische Kanalwahl- und Sendeleistungskontrolle verwenden. Dies wird aber nicht überall konsequent umgesetzt.

Wir verwenden Cookies um unsere Website zu optimieren und Ihnen das bestmögliche Online-Erlebnis zu bieten. Mit dem Klick auf „Alle erlauben“ erklären Sie sich damit einverstanden.